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Figure 1. Universality of UniMotion. Our model can generate motion from compositional sequence- and frame-level text (Hierachical
Text to Motion), generate detailed per frame motion descriptions (Motion to Text), generate motion and accurate frame-level text descrip-
tions from noise (Unconditional Joint Generation), amongst other use cases outlined in our experiments section. Tasks can be combined
for a controllable generation: users can generate motion from a coarse sentence, our model additionally generates detailed text descriptions,
which can be edited and used for regeneration, generating the desired edited motion (Motion Generation and Editing).

Abstract
We introduce UniMotion, the first unified multi-task hu-

man motion model capable of both flexible motion con-
trol and frame-level motion understanding. While existing
works control avatar motion with global text conditioning,
or with fine-grained per frame scripts, none can do both at
once. In addition, none of the existing works can output
frame-level text paired with the generated poses. In con-
trast, UniMotion allows to control motion with global text,
or local frame-level text, or both at once, providing more
flexible control for users. Importantly, UniMotion is the
first model which by design outputs local text paired with
the generated poses, allowing users to know what motion
happens and when, which is necessary for a wide range
of applications. We show UniMotion opens up new appli-
cations: 1.) hierarchical control, allowing users to spec-
ify motion at different levels of detail, 2.) obtaining mo-
tion text descriptions for existing MoCap data or youtube
videos 3.) allowing for editability, generating motion from
text and editing the motion via text edits. Moreover, UniMo-
tion attains state-of-the-art results for the frame-level text-

to-motion task on the established HumanML3D dataset.
The pre-trained model and code are available available on
our project page at https://coral79.github.io/
uni-motion/.

1. Introduction

Human motion synthesis is important for gaming, robotics
and AR/VR applications. In real-world scenarios, avatars
need to be controlled at multiple levels of abstraction. Ef-
fective controllability requires that an avatar be capable of
executing detailed local sub-tasks according to a timeline
while simultaneously understanding the overall global ob-
jective. In addition, the synthesis model should be aware
of what action happens and when – an essential feature of
biological intelligence to react to the external world.

However, current motion synthesis methods focus on ei-
ther global per sequence-level control, or local per frame-
level control, but don’t allow for both. This results in single-
level conditioning, thereby lacking hierarchical control.
Importantly, these models also lack fine-grained motion
awareness, specifically, the ability to output motion descrip-
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tions for each pose in the generated output motion sequence.
The frame-level text-to-motion methods [1, 3, 33] provide
detailed manipulation of individual frames. However, it can
be impractical to specify the exact duration of each action
in some situations, and ensuring overall semantic plausi-
bility throughout the entire sequence remains challenging
for these models. Conversely, the sequence-level text-to-
motion methods [17, 37, 51] focus on achieving natural
overall motion but struggles with fine-grained control. Fur-
thermore, current models lack semantic awareness of the
synthesized motion – there is no understanding of what ac-
tion occurs when. Thus, they are lacking motion under-
standing, which is crucial for reacting to the external world
and allows for action-specific editing in animation applica-
tions. While some works have made progress in this direc-
tion [17, 51] by predicting sequence-level text descriptions
from motion, they fail to provide fine-grained frame-level
text. Overall, despite their potential synergies, motion un-
derstanding and synthesis have been treated in isolation in
the literature.

In this paper, we introduce UniMotion, the first unified
multi-task model capable of both flexible motion control
and frame-level motion understanding. UniMotion takes as
input, global sequence level or local frame-level text inputs
or human motion sequences, or any subsets thereof, or no
input in case of unconditional generation. The output of
our model is either fine grained, per pose text descriptions,
or human motion sequences. This flexibility, allows us to
train our model from different data sources. Moreover, by
design, we unify tasks that are usually treated in separa-
tion by prior works, such as Frame-Level Text-to-Motion,
Sequence-Level Text-to-Motion and Motion-to-Text, into a
single simple unified model, trained a single time. Impor-
tantly, UniMotion’s flexibility also allows for novel tasks
not previously considered by prior work like 1.) uncon-
ditional generation of human motion with corresponding
frame-level text descriptions and 2.) generation of frame-
level text from motion, providing granular, time-aware an-
notations (see Fig. 1 for an illustration our diverse tasks).

To accomplish this, our model utilizes a transformer ar-
chitecture with temporal alignment between the motion and
frame-level text. We further enhance this by diffusing the
local text together with the poses, using different diffusion
time variables for each, inspired by the approach in Uni-
diffuser [2]. Specifically, the local text is tokenized and
frame-wise aligned with the 3D poses, while the global text
is injected as a global token. This design allows UniMo-
tion to dynamically switch between global, local, or com-
bined conditioning signals at test time, providing flexibil-
ity in motion generation and understanding. During train-
ing, we sample from all possible distributions (global and/or
local conditioning, or unconditional), alternating between
providing noise and signal to the model for each modality.

This method effectively teaches the model both uncondi-
tional and conditional distributions, equipping it with the
ability to handle various inputs.

Real-world applicability. We demonstrate practical
utility across various real-world scenarios:

2D Video Annotation: We annotate human motion ex-
tracted from YouTube videos with frame-level text, by feed-
ing UniMotion with human pose estimation (HPE) results.
This annotation can serve as close captions for the visually
impaired. 4D Mocap Annotation: We annotate human mo-
tion captures, e.g. obtained from IMUs, with frame-level
text. This provides automated insights and descriptions into
the captured motions, e.g. allowing for text search retrieval
of motion sequences. Hierachical Control: We provide ex-
amples of generating motion sequences with two levels of
abstraction, specifying a general motion for arms via global
text, and a fine-grained motion sequence for the rest of the
body via local-level text. Motion editing: We show that
UniMotion can be used for content creation, where control-
lability of the motion is important. Given a global text de-
scription, a user can generate an initial motion including a
local-level text description. The user can then edit the mo-
tion as desired, editing the text segments and regenerating
the motion. In summary, our key contributions are:

• Unified Synthesis and Understanding: We introduce
UniMotion, the first unified probabilistic motion model
allowing for sampling from the joint and all possible con-
ditionals. It unifies tasks that are usually treated in sepa-
ration by prior works, while also allowing for novel tasks
not previously considered.

• Results and Applications: We show applicability to 2D
Video Annotation, 4D Mocap Annotation, Hierachical
Control and Motion editing. Moreover UniMotion attains
state-of-the-art results for the frame-level text-to-motion
task on the established HumanML3D dataset. Code and
models will be released upon acceptance.

2. Related Work

Conditional human motion synthesis.. Synthesizing hu-
man motion has been a long-standing challenge. Recent
studies in motion generation have shown notable progress
in synthesizing movements conditioned on diverse modal-
ities such as text [26, 28, 33, 34, 36, 37], music [20, 21],
scenes [25, 38], and interactive objects [13, 19, 35, 40,
42, 43, 48, 49]. Recent years have witnessed substantial
advancements in text-driven motion generation [8, 11, 12,
26, 36, 44]. Notably, diffusion-based generative models
have emerged as potent tools, exhibiting impressive per-
formance on leading benchmarks for text-to-motion tasks.
Pioneering efforts such as MotionDiffuse [45], MDM [37],
and FLAME [18] represent early applications of diffusion
models to text-driven motion generation. Building upon
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this foundation, MLD [6] further harnesses latent diffusion
models, while ReMoDiffuse [46] integrates retrieval tech-
niques into the motion generation pipeline. Recent Mo-
tionLCM [8] accelerates the sampling speed by adopting
consistency model in motion latent space. Noteworthy, Om-
niControl [41] specializes in fine-grained spatial control of
body joints.
Text-to-motion generation models.. The current land-
scape of text-to-motion generation models can be catego-
rized into two main streams of controllability: (a) global
text-based control and (b) Fine-grained local text-based
control. Among the former, MotionGPT [17] utilizes pre-
trained language models and motion-specific vector quan-
tized models to conceptualize human motion as a language.
Similarly, AvatarGPT [51] proposes a top-down approach
to address end-to-end motion planning and synthesis.

Conversely, research focusing on short, specific instruc-
tions presents another avenue. PriorMDM [33] intro-
duces a two-stage method that synthesizes short motion se-
quences and their padded transitions. However, due to the
lack of effective supervised learning, motions generated by
such methods often exhibit artifacts, such as abrupt speed
changes. FineMoGen [47] proposes diffusion-based mo-
tion generation and editing for fine-grained per-body part
motion control, albeit requiring detailed per-body part in-
structions as input. Closely aligned with our work are meth-
ods enabling temporal control of motion, where the length
of each motion segment can be controlled at the frame
level. FlowMDM [3] demonstrates impressive results in
seamless transitions between local motion segments, while
STMC [28] proposes a hybrid method for spatial and tem-
poral motion composition of multi-stream motion using off-
the-shelf pre-trained motion models [37]. Notably, these
methods do not condition on global text, resulting in a lack
of awareness of the global motion context and less natural
motion transitions.

Our method combines the advantages of both categories.
It is the first method enabling the generation of human mo-
tion conditioned both at the abstract level with global text
and at the detailed level with local texts.
Human motion understanding.. Understanding the mean-
ing of human motion has been a long-standing research
topic, this has been approached by describing human mo-
tion with predefined action labels [7, 52], which have dom-
inated this field for some time. However, these methods
have obvious limitations, they are not appropriate to de-
scribe complex motion sequences. Recently, the text anno-
tated motion datasets [5, 11, 29] have enabled the methods
[12, 17, 44] that learn the mutual mapping between human
motion sequences and natural language descriptions. While
these works produce impressive, they fall short in gener-
ating accurate per-frame language descriptions. More re-
cently, methods such as [9, 16] have achieve motion editing

based on more fine-grained conditions, such as per body
part condition. However, they still lack the capability for
temporal editing. UniMotion is the first approach that not
only generates per-frame language descriptions but also al-
lows for motion generation over specified time spans, thus
advancing the understanding of human motion.

3. Preliminary: Motion Diffusion Model
We provide a brief overview of the Human Motion Diffu-
sion Model (MDM) [37], which is designed for sequence-
level text-to-motion synthesis. This model serves as a build-
ing block for our UniMotion, which extends its capabilities
by (a) incorporating frame-level text input and (b) enabling
the joint generation of both motion and text. MDM aims
to synthesize human motion sequences, denoted as x1:N ,
where N is the length of the sequence. The synthesis pro-
cess is guided by a sequence-level text condition c, mean-
ing the entire motion sequence is described by a single text
prompt. In cases of unconditioned motion generation, the
condition is represented as c = ∅.

Diffusion is modeled as a Markov noising process, where
t = 0 represents the timestep corresponding to the clean
data and t = T corresponds to the fully corrupted data.
The samples generated during this process are denoted as
{x1:N

t }Tt=0, with x1:N
0 being drawn from the data distribu-

tion. The transition between steps is defined by:

q(x1:N
t |x1:N

t−1) = N (
√
αtx

1:N
t−1, (1− αt)I). (1)

where αt ∈ (0, 1) indicates the noise level, with αi =
1 − βi and βi being the noise schedule. We drop the se-
quence length and use xt to denote the full sequence at nois-
ing step t for simplicity. The reverse diffusion process grad-
ually denoises the noisy sequence xT , with the conditioned
motion generation modeling the distribution p(x0|c). The
denoised data is directly predicted using a model G, where
x̂0 = G(xt, t, c) [32].

To adapt the diffusion model for human motion, we fol-
low [11] to parameterize the human motion as a 263 dimen-
sional vector. Due to its redundancy inherent in the motion
representation, a simple training objective [15, 37] can be
used, minimizing the expected distance between the origi-
nal noisy motion x0 and the predicted motion x̂0:

Lsimple = Ex0∼q(x|c),t∼U{1,...,T}∥x0 −G(xt, t, c)∥22. (2)

Notably, this simple loss automatically includes the geome-
try losses terms described by [37], enforcing physical plau-
sibility and preventing artifacts.

4. UniMotion: Unifying Motion Synthesis and
Understanding

In this section, we introduce UniMotion, a unified model for
joint motion synthesis and understanding, including hierar-

3



Figure 2. Overview of UniMotion. UniMotion is a transformer-based diffusion model (Model) that can be input conditioned on a) human
motion, b) clip embedded frame-level text, or c) sequence-level text (Input) or any subsets thereof or none, and instead supplied with
noise. At it’s core it allows to diffuse motion and text individually, implemented via separate denoising timesteps tx and ty . After training
with Frame-level text Losses and Motion losses (Loss), see Sec. 4.1. UniMotion can output clean, noise-free motion, and frame-level text
descriptions explaining the generated motions. (Output)

chical control via text. UniMotion generates high-quality
motion and text outputs, either from full noise or given con-
ditional inputs such as frame-level text, sequence-level text,
a motion sequence, or any subsets thereof, (see Fig. 2) span-
ning a variety of applications treated in isolation by related
works.

To achieve this, our model advances prior single-
modality motion diffusion models (see Subsec. 4.1) to en-
compass multi-modal distributions, specifically motion, and
fine-grained text. We combine motion sequence and fine-
grained frame-level texts, maintaining the temporal align-
ment of these two modalities to enable temporal seman-
tic awareness (see Sec. 4.2). Unlike previous works,
our multi-modality diffusion process supports joint training
across datasets with varying annotations (sequence-level
and frame-level) (see Subsec. 4.3).

4.1. Multi-Modal Motion and Text Diffusion

Previous motion synthesis models mainly focus on text-to-
motion synthesis tasks [1, 3, 8, 17, 28, 33, 37, 41, 45, 47,
50, 51]. Some recent methods also generate sequence-level
text descriptions [17, 51], but lack the temporal awareness
and alignment we propose with UniMotion. Moreover, no
model currently supports the joint generation of motion and
text. This motivates our holistic model of motion synthesis
and understanding, UniMotion, working in a multi-modal,
joint probabilistic fashion we introduce next.

Similar in spirit to [2] that focuses on joint probabilis-

tic modeling of 2D images and text, our method models the
distribution of two temporal modalities under global con-
ditioning. More concretely, a frame-level text sequence,
y1:N is denoted analogously to the motion sequence x1:N ,
where N denotes the sequence length and {y1:N

t }Tt=0 are
the noise samples created via Eq. 1. Similarly, we drop
the notation of sequence length in the following for sim-
plicity. With that, multi-modal diffusion can be achieved
by extending G to Gθ(xtx ,yty ; t

x, ty) with the additional
process and including the separately scheduled diffusion
timesteps tx, ty for motion and text respectively. By
virtue of this formulation, the joint distribution p(x,y) can
be sampled at inference time, starting the denoising pro-
cess with Gθ(xT ,yT ;T, T ), and the conditional p(x|y) by
Gθ(xT ,y;T, 0) and analogously p(y|x). Specifically, we
jointly train the model via

min
θ

E(x0,y0),tx,tyExtx ,yty
∥Gθ(xtx ,yty ; t

x, ty, c)−(x0,y0)∥22
(3)

where θ are weights parametrizing G and U is the dis-
crete uniform distribution and expectation is taken over dis-
tributions: (x0,y0) ∼ p(x, y), tx ∼ U{0, ..., T}, ty ∼
U{0, ..., T}, xtx ∼ q(xtx |x0),yty ∼ q(yty |y0).

4.2. Temporally aligned Text and Motion Encoding

We find that appropriate architectural integration of two
modalities (text and motion) into the joint formulation is
a key performance factor.
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Method Training Set Input Per-crop semantic correctness Per-crop Realism Per-seq Realism
R-Prec@3 ↑ M2T ↑ M2M ↑ FID ↓ Diversity → FID ↓ Diversity →

GT - - 0.735±0.008 0.663±0.000 1.000±0.000 0.000±0.000 1.375±0.005 0.000±0.000 1.391±0.003

TEACH BABEL f 0.588±0.007 0.623±0.001 0.575±0.000 0.155±0.001 1.340±0.003 0.304±0.001 1.344±0.003

DoubleTake BABEL f 0.544±0.013 0.602±0.002 0.560±0.001 0.195±0.002 1.332±0.005 0.353±0.002 1.337±0.004

STMC HML f 0.528±0.012 0.599±0.000 0.616±0.010 0.156±0.000 1.358±0.005 0.233±0.000 1.362±0.005

FlowMDM BABEL f 0.618±0.007 0.631±0.002 0.652±0.001 0.101±0.001 1.352±0.006 0.211±0.002 1.375±0.005

Ours BABEL f 0.636±0.017 0.633±0.004 0.677±0.002 0.087±0.002 1.366±0.009 0.180±0.004 1.374±0.002

Ours HML∩ BABEL f 0.668±0.009 0.643±0.002 0.698±0.002 0.071±0.001 1.372±0.005 0.150±0.001 1.378±0.003

Ours HML∩ BABEL f + s 0.679±0.006 0.644±0.001 0.706±0.002 0.066±0.002 1.373±0.009 0.133±0.004 1.381±0.006

Table 1. Frame-Level to Text evaluation. Per-crop refers to text segment level evaluation. Training Set specifies the dataset used for
training. Input specifies the type of text input. f : frame-level text, s: sequence-level text. f+s demonstrates that combining multi-level
conditioning signals can enhance model performance in terms of semantic correspondence. The evaluation is repeated 10 times, and ±
indicates the 95% confidence intervals.

A simple integration is to treat motion and text as sep-
arate modalities and as input to the Transformer. An even
more structure-agnostic approach is proposed by UniDif-
fuser [2], where each token of their text encoding is fed
separately as input. We find that both these variants lead
to performance issues.

In contrast, in our setting of motion and text sequences,
we find temporal alignment to be the key. A simple, yet ef-
fective implementation is the concatenation of motion and
text into joint encodings along the temporal dimension. In-
stead of learning to correlate word positions with motion
positions, alignment is directly given through the input en-
coding.

However, this alone does not guarantee performance. We
encode text into the space of CLIP [31] with a pertained
model. Using the full encodings of pose and text as token
creates issues. We hypothesize this is due to an excessive
capacity spent on the high-dimensional text tokens. We
solve this by projecting CLIP embeddings down to 50 di-
mensions via PCA [39] and find this improves performance
drastically. To get back to text labels from embeddings af-
ter diffusion, we match the predicted clip embedding to our
database of text labels to obtain the output text using the
closest match.

4.3. Data Merging

The popular AMASS dataset [23] of natural human mo-
tion, represented by the SMPL body model [22] has recently
been annotated in two efforts, namely BABEL [29] and Hu-
manML3D [11]. While HumanML3D annotations consist
of sequence-level text annotation, that is, a single text an-
notation for a motion clip, the BABEL annotations consist
of frame-level annotations, assigning semantic label to the
pose for each frame of the motion sequence. Instead of re-
stricting to use one at a time, as in prior works, UniMotion
is directly trained on both jointly, using sequence level Hu-
manML3D annotations as condition c and frame level se-
quences as y1:N .

A challenge however lies in that both datasets annotate

different subsets of AMASS. A trivial solution is to con-
sider overlapping annotations of motions. We denote our
model trained with this scenario UniMotion overlap, and
investigate the performance in experiments (see Sec. 5).

5. Experiments

In this section we investigate the benefit of hierarchical text
at inference and training time (i.e. usage of frame-level and
sequence-level text). We show the versatility of UniMo-
tion’s unification of synthesis and understanding. Specifi-
cally, allowing for frame-level text to motion (Subsec. 5.1)
and we for the first time show motion-to-frame-level text
(Subsec. 5.2), including a real-world application scenario.
Finally, UniMotion is the first model to show joint genera-
tion of motion along with frame-level understanding (Sub-
sec. 5.2). In the ablation study, we show that the proposed
multi-modality strongly improves generation quality com-
pared to our backbone MDM [37]. (Subsec. 5.3)

Implementation Details.. We utilize a temporally aware
transformer, similar to MDM [37]. Text inputs are encoded
using pretrained CLIP, followed by PCA reduction. Our
model is trained on a single A100, with training spanning
approximately 40 hours. Please refer to 4.3 for details on
training data.

Baselines. We compare our model to the publicly re-
leased works that are capable of frame-level text-to-motion
generation: auto-regressive model TEACH [1], Double-
Take [33] based on diffusion sampling, FlowMDM [3],
a diffusion model based on Blended Positional Encoding
and STMC [28], a post-hoc test time method stichting indi-
vidual predictions of MDM [37]. Note that neither Teach,
FlowMDM nor STMC supports hierarchical training. Since
STMC admits overlapping control signals we compare to
it in terms of hierarchical control. Since no prior works
allow for training on sequence and frame-level text in-
put, models are either trained on BABEL(frame-level) or
HumanML3D(sequence-level) data, as indicated in our re-
sult tables. Please refer to our supp. document for more
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Figure 3. Text2Motion qualitative results. Columns 1,3: Local text is the input to our method and baselines STMC [28] (adapted)
FlowMDM [3]. Columns 2, 4: Both local and global text are the input our method and STMC. Our model performs well regardless of the
complexity of the local text, in contrast to STMC which fails to generate Ginga dance in columns 3 and 4 and performs walking instead.
FlowMDM cannot be conditioned on both global+local text.

details.
Evaluation Metrics. First, we introduce our semantic met-
rics, measuring how well the generated motions correspond
to their text descriptions. R-Precision [11] assesses the ac-
curacy of ranking the correct ground-truth text correspond-
ing to a predicted motion at the top positions (Top-1, Top-2,
and Top-3) within a set that includes 32 randomly sampled
incorrect text matches. With M2T [28], we measure how
well the per-crop motion matches their textual description,
we calculate their cosine similarity in the joint-embedding
space of TMR++ [4]. Similarly, the M2M [28] score is
the cosine similarity between the generated and the ground-
truth motion embeddings.

With our realism metrics, we measure how well the gen-
erated motion distributions fit the ground truth one. We uti-
lize the Frechet Inception Distance (FID) [14] to measure
the distribution distances and Diversity [11] computes the
distributions variance, both in the TMR++ as the embedding
space.

5.1. Frame-Level Text2Motion Results

We evaluate the Text2Motion task (Tab. 1), where we inves-
tigate the effects of frame-level and sequence-level training
data. Qualitative analysis is presented in Fig. 3. When we
train our model as FlowMDM (best performing prior work)
on frame-level labels of all Babel annotations (Tab. 1, Ours
BABEL) we observe our UniMotion to be consistently better
but still roughly on par as expected since both models are
using a backbone similar to MDM [37]. The slight improve-

ment can be attributed to the temporal input alignment (see
Sec.4.2) and the multi-timestap diffusion training (see Sec.
4.1). Next, we significantly reduce the training dataset size
to the subset sequences annotated with both HML (frame-
level text) and BABEL (sequence-level text) (cf. Tab. 1
Ours HML-BABEL f). Although one could expect a per-
formance decrease, we find the opposite, a strong consistent
performance increase in all metrics - suggesting the strong
positive impact of multi-model training. Notably, this is
the case although only frame level inputs are given for the
evaluation and sequence-level inputs only enrich the mod-
els training data. Finally, we investigate the effect of adding
sequence-level text into the model for evaluation (cf. Tab.
1 Ours HML-BABEL f + s), again showing a consistent
improvement. In conclusion, the evaluation shows cross-
modal generalization, consistently improving the results.

5.2. Applications

Please see these and further results in motion in the supple-
mentary video.
Motion2Text. Here we show UniMotions capabilities of
predicting frame-level text given human motion. This is a
novel task, prior work is not able to do. We, therefore, re-
strict ourselves to qualitative evaluations. See Fig. 4, where
we use UniMotion to annotate MoCap data and Youtube
videos with motion descriptions.
Hierarchical Text2Motion:. We show that UniMotion, al-
though not directly trained for this task, shows generaliza-
tion capabilities to compositional text conditioning, where
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Method Training Set Input FID ↓ Diversity → R-Prec@1 ↑ R-Prec@2 ↑ R-Prec@3 ↑ M2T ↑

GT - - 0.000±0.000 1.391±0.003 0.699±0.014 0.834±0.011 0.878±0.005 0.748±0.000

MDM HML s 0.449±0.025 1.315±0.014 0.376±0.008 0.536±0.010 0.639±0.010 0.631±0.003

Ours HML-BABEL f 0.152±0.002 1.377±0.006 0.344±0.010 0.508±0.019 0.587±0.007 0.648±0.003

Ours HML-BABEL s 0.195±0.003 1.381±0.011 0.375±0.021 0.539±0.018 0.655±0.016 0.653±0.004

Ours HML-BABEL f + s 0.133±0.003 1.382±0.002 0.424±0.005 0.593±0.011 0.677±0.011 0.678±0.002

Table 2. Ablation Study on Sequence-level Text2Motion generation. In this table, we compare with our backbone model MDM[37]
to study whether introducing multi-modality helps the motion generation performance. Symbols ↓, and → indicate that lower, or values
closer to the ground truth (GT) are better, respectively. The evaluation is repeated 10 times, and ± indicates the 95% confidence interval.

Figure 4. Motion2Text understanding of MoCap and YouTube data. (a) Given an input MoCap sequence, we use UniMotion to predict
frame-level local text. (b) We annotate human motion from YouTube videos with frame-level text. We lift 2D videos to 3D human motion
via frame-by-frame pose estimators [10]. We visualize the SMPL human pose (Pink) overlayed on the YouTube videos frames. Then we
run UniMotion to predict frame-level annotations (colored text descriptions below the frames). Annotations could serve as valuable audio
close captions for the visually impaired.

global-text and local-text are giving different but comple-
mentary conditioning (see. Fig. 1).

Joint text and motion generation. UniMotion can jointly
generate human motion and corresponding frame-level text,
allowing users to not only generate motion but also to di-
rectly understand the generated sequence on a frame level.
Prior work can not perform this task, see Fig. 5 for condi-
tional joint generation and in Fig. 6 for unconditional gen-
eration.

Motion Editing for Content Creation. We show the ap-
plication of UniMotion to content creation, where a user
specifies a desired motion sequence via rough global text
and obtains the motion sequence with a frame-level script.
The user succeeds by editing the frame-level script and re-
generates the motion to obtain the desired edits, see Fig. 1.

5.3. Ablation: Importance of Multi-Modality

In this section, we investigate the importance of our unifi-
cation of multiple modalities.

Flexibility.. As seen in previous experiments, this allows to
generate high-quality motion and text outputs, either from
full noise or given conditional inputs such as frame-level
text, sequence-level text, a motion sequence, or any sub-
sets thereof, (see Fig. 2) spanning a variety of applications
treated in isolation by related works.

Improved quality.. Additionally, we ablate that the in-
cluded multi-modality also allows for improved generation
quality. For this, we compare our model trained on multi-
modal against our backbone architecture MDM [37], which
does not include frame-level text in output or input, nor is
equipped with the flexible multi-modal diffusion.

Our model, used with the same sequence-level text in-
put data (Table 2, input: s), as MDM, drastically improves
MDM in terms of FID and diversity, but also improves or

7



Figure 5. Joint text and motion generation results. Input to the models is only the global text shown on the left. We compare the
generated motion of ours, MDM [37] and FlowMDM [3]. Our method jointly predicts the frame-level labels, so we can annotate sub-
sequences, while MDM and FlowMDM can only generate the motion.

Figure 6. Unconditional joint text and motion generation. Our model, by design, generates poses aligned with local text.

is on par in other metrics. Since the backbone transformer
is the same, this shows the strength of the proposed multi-
modal training. Notably, this effect is visible even though
our training dataset is only a 30% subset of the MDM train-
ing dataset.

Combining sequence-level and frame-level text (Table 2,
input: f+s) shows a further significant improvement, im-
proving MDM in all metrics. This improvement does not
stem from the addition of frame-level text input alone since,
in isolation, frame-level labels do not achieve this quality
(see Table 2, input: f). We find the interaction between
frame-level and sequence-level inputs is the reason for the
improvements. In conclusion, the proposed multi-modality
is the key factor allowing for improved generation quality.

6. Conclusions
We introduced UniMotion, the first unified multi-task hu-
man motion model capable of both flexible motion con-
trol and frame-level motion understanding. Using a flexi-
ble multi-model diffusion scheme, UniMotion solves sev-

eral tasks in a unified fashion. Specifically, it unifies
tasks that are usually treated in separation by prior works,
such as Frame-Level Text-to-Motion, Sequence-Level Text-
to-Motion and Motion-to-Text, into a single simple unified
model, trained a single time. Importantly, UniMotion’s
flexibility also allows for novel tasks not previously con-
sidered by prior work like 1.) unconditional generation of
human motion with corresponding frame-level text descrip-
tions and 2.) generation of frame-level text from motion,
providing granular, time-aware annotations. We show Uni-
Motion opens up new applications: 1.) hierarchical control,
allowing users to specify motion at different levels of de-
tail, 2.) obtaining motion text descriptions for existing Mo-
Cap data or YouTube videos and 3.) allowing for editability,
generating motion from text, and editing the motion via text
edits. Moreover, UniMotion attained state-of-the-art results
for the frame-level text-to-motion task on the established
HumanML3D dataset showing the proposed multi-modality
is the key factor allowing for improved generation quality.
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UniMotion: Unifying 3D Human Motion Synthesis and Understanding

Supplementary Material

In the following, we start with the supplementary video
in Sec. A and discuss the details of training data in Sec. B.
Then, we present the details of our evaluation setup in
Sec. C, followed by implementation details in Sec. D, addi-
tional results in Sec. E and Sec. F. Finally, we demonstrate
our model’s advantage over LLMs and other motion-to-text
models in Sec. G.

A. Video with Qualitative Results
We provide videos to further explain our method and to
present the results with animated motions, showing a clearer
comparison across various tasks and against other baselines.
Supplementary results can be found in the accompanying
ZIP file.

B. Training Data
UniMotion is trained on an overlapping subset of BA-
BEL [30] and HumanML3D [11], utilizing both sequence-
level and frame-level text as input. Fig. 7 illustrates the
data alignment and merging process. However, since these
two datasets are independently labeled and cover differ-
ent subsets of AMASS [24], they do not fully overlap.
The overlapping portion comprises only 8,829 motion se-
quences (excluding left-right flipping), which represents ap-
proximately 30.25% of the HumanML3D dataset (23,384
sequences). This overlapped dataset includes motion se-
quences, sequence-level text descriptions, and frame-level
text descriptions.

C. Evaluation Setup
In this section, we outline the details of the evaluation setup
and how we run baselines under this setup.

For frame-level text-to-motion generation, we use BA-
BEL frame-level text (in short-phrase format) as conditional
input, which is also used as our test-time text input. To en-
sure a fair comparison with other baselines and to maintain
consistency with the training data distribution, we use their
pre-trained models on BABEL if available. However, our
model is trained on a subset of the HumanML3D training
split, which overlaps with the BABEL test split. Conse-
quently, we generate a joint test set, excluding training se-
quences from both. Finally, the test set contains 358 se-
quences and 998 sub-sequences of motion segments. Our
test, train, and validation split will be made available along-
side our code and models upon publication.
TEACH. For TEACH [1] we use the pre-trained model sup-
plied by the authors on their website, which was trained on

Figure 7. We merged HumanML3D and BABEL based on their
time correspondence with AMASS. Each sequence (approxi-
mately 1-10 seconds) in HumanML3D includes 3-4 sequence-
level annotations in sentence format, as illustrated in the blue area.
In contrast, BABEL provides separate annotations for atomic ac-
tions with varying lengths, where the text labels are primarily short
phrases aligned at the frame level, as shown in the green area.

BABEL. Since TEACH can not be applied to text segments
with very few frames, we set the minimum size of each eval-
uation sequence to 8 frames.

PriorMDM. For PriorMDM [33], we compare Double-
Take with our method. To fairly compare DoubleTake with
our method, we use the “Babel TransEmb GeoLoss” pre-
trained model, as our local text input is based on the BA-
BEL dataset. When feeding motion crops into DoubleTake,
we specify the length of each motion crop. In DoubleTake’s
default setup, the handshake size is set to 20 and the blend-
ing window size to 10, resulting in a minimum motion crop
length of 70. If a motion crop is shorter than 70, the method
automatically pads it to this length. However, many motion
crops in our test set are shorter than 70, which would cause
significant discrepancies between the input and output mo-
tion lengths. To maintain similar input and output sizes, we
modify the handshake size to 2 and the blending window
size to 1. The results under this setup are shown in Table 1.
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Figure 8. The comparison between ground-truth motion-text matching in the joint embedding spaces of Guo et al.’s model (a) and
TMR++ (b). Left: The heatmap shows the paired motion-text distances, where darker shades indicate smaller distances. The vertical axis
represents motion samples, while the horizontal axis represents text samples. Right: The top-3 R-precision scores are displayed for each
row, indicating the closest 3 texts to each motion. Red denotes the top 1 match, orange the top 2, and yellow the top 3. If the texts are
identical, they are only counted as one.

STMC. For an entire motion sequence, STMC [28] allows
specifying the body part for each individual subsequence of
motion. To align with our setup, we set the corresponding
body part to include all body parts for each motion crop
when feeding the motion into STMC.

FlowMDM. To ensure a fair comparison with our method,
we use the human motion compositions with the pre-trained
BABEL model for the FlowMDM [3] method. Since
FlowMDM is designed to generate motion compositions
seamlessly, there is no need to specify any transition length
between atomic motions. Therefore, we directly input the
frame-level texts and corresponding lengths, consistent with
the input format used for our model.

Evaluation metrics.. For the evaluation met-
rics—Semantic Correspondence (R-precision, M2T
score, M2M score) and Realism (FID, Diversity)—we

use TMR++ instead of the commonly used motion and
text embedding model from Guo et al. [11]. This choice
is driven by the need to evaluate models trained across
different datasets and to assess performance at multiple
levels of generated motion (per-crop vs. per-sequence).

For per-crop semantic correctness, we focus on evaluat-
ing the alignment of atomic motion crops with their corre-
sponding input text, formatted as BABEL. Additionally, we
assess the overall realism of sequence-level motion across
crops, which aligns with HumanML3D’s sequence-level
evaluation. The evaluation model aims to establish a joint
latent space for motion and text, performing matching be-
tween them based on distance within this shared space.

The commonly used model from Guo et al. [11] is
trained solely on HumanML3D. To evaluate BABEL pre-
trained models, Shafir et al. [33] retrained this model
on BABEL data, and FlowMDM relies on these models
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for separate evaluations on each dataset. STMC utilizes
TMR [27], a retrieval model that demonstrates a better
joint latent space compared to the classic evaluation model
used by MDM, especially in terms of text-motion distance
for ground-truth motion-text pairs. However, TMR is also
trained only on HumanML3D, which limits its ability to ac-
curately evaluate both crop-level motions and BABEL text,
as well as sequence-level realism.

To address these limitations, we employ the latest model,
TMR++ [4], which is trained across datasets and de-
livers highly accurate matching results between ground-
truth motion and text, whether in BABEL format (subse-
quence level, short text phrases) or HumanML3D format
(sequence-level, text descriptions in sentences).

For a quantitative comparison, please refer to Table 3,
which evaluates ground-truth motion and text. For qualita-
tive analysis, see Fig. 8, which presents a heatmap of the
matching distance across a random sample of 32 batches.

Method Training Set Per-crop semantic correctness
R-Prec@1 ↑ R-Prec@2 ↑ R-Prec@3 ↑

Guo et al[11] HumanML3D 0.281±0.005 0.438±0.004 0.539±0.006

TMR++[4] HumanML3D+BABEL 0.520±0.013 0.659±0.008 0.735±0.008

Table 3. Ground-truth matching score comparison across eval-
uation modals. In this table, we compare the matching scores
across different evaluation models for ground-truth motion and
text, averaging over batches of 32 random samples. The results
demonstrate that TMR++ is a more reliable model within our eval-
uation setup.

D. Implementation Details

We provide more details about the implementation of our
model. We extend the MDM [37] framework to separate
time steps for motion and frame-level text, and adjust the
input to accept the temporal alignment of both the motion
vector and text embedding vector. The model is retrained
from scratch using the merged overlapping dataset, with hy-
perparameters consistent with those suggested by Tevet et
al. [37].

For frame-level text, we use the same CLIP model as
used in MDM to generate embeddings. We then applied
PCA to condense the dimensionality from 256 to 51, pre-
serving approximately 70% of the original variance. Our
model predicts both the clean motion and the condensed
CLIP embeddings for the frame-level texts. To output the
texts, we use K-nearest neighbors (KNN) to match the out-
put CLIP embeddings in a pre-computed database. This ap-
proach effectively matches nearby CLIP embeddings to the
corresponding closest text even with a small variance.

For the training and sampling algorithm, please refer to
Algorithm 1, 2, 3.

Algorithm 1 Training
1: repeat
2: x0,y0, c ∼ q(x0,y0, c)
3: c = ∅ with probability 10%
4: tx, ty ∼ Uniform({1, 2, . . . , T})
5: ϵx, ϵy ∼ N (0, I)
6: Let xtx =

√
αtxx0 +

√
1− αtxϵ

x

7: Let yty =
√
αtyy0 +

√
1− αtyϵ

y

8: Take gradient step on ∇θ∥ϵθ(xtx ,yty , t
x, ty, c) −

[x0,y0]∥22
9: until converged

Algorithm 2 Sampling x0 conditioned on y0 (similar for
sampling y0 conditioned on x0, with or without condition-
ing on c.

1: xT
0 ∼ N (0, I)

2: c = ∅ or user specify
3: for t = T, . . . , 1 do
4: ϵ ∼ N (0, I)
5: xt−1

0 = ϵxθ (
√
αtxx

t
0 +

√
1− αtxϵ,y0, t, 0, c)

6: end for
7: return x0

Algorithm 3 Joint sampling of x0,y0 (with or without con-
dition on c)

1: xT
0 ,y

T
0 ∼ N (0, I)

2: c = ∅ or user specify
3: for t = T, . . . , 1 do
4: ϵx, ϵy ∼ N (0, I)
5: xt−1

0 ,yt−1
0 = ϵθ(

√
αtxx

t
0 +√

1− αtxϵ
x,
√
αtyy

t
0 +

√
1− αtyϵ

y, t, t, c)
6: end for
7: return x0,y0

E. More Experiment Results
We provide only a subset of the metrics for semantic cor-
respondence and motion realism in the main paper due to
space constraints. Here, we provide the complete evalua-
tion.
Semantic correspondence.. Tab. 4 lists all three R-
precision scores, demonstrating that our method outper-
forms all baseline methods. These results are consistent
with our conclusions in the experiment section of the main
paper.
Realism. Tab. 5 includes FID and Diversity scores cal-
culated using the evaluation model from Guo et al. [11]
for reference. Note that at the crop level, this model pro-
vides less stable evaluations because it was trained only on
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Figure 9. Text variation (a) and motion variation (b) are direct applications that leverage the two conditional distributions modeled by
UniMotion. Motion variation (b) is achieved by generating frame-level text descriptions from a motion sequence, and then using these
descriptions to create a new, semantically similar motion with different content. Text variation (a) is produced by reversing this process to
create diverse text annotations.

Method Training Set Input Per-crop semantic correctness
R-Prec@1 ↑ R-Prec@2 ↑ R-Prec@3 ↑ M2T ↑ M2M ↑

GT - - 0.520±0.013 0.659±0.008 0.735±0.008 0.663±0.000 1.000±0.000

TEACH BABEL f 0.375±0.008 0.516±0.007 0.588±0.007 0.623±0.001 0.575±0.000

DoubleTake BABEL f 0.332±0.013 0.467±0.013 0.544±0.013 0.602±0.002 0.560±0.001

STMC HML f 0.321±0.009 0.452±0.012 0.528±0.012 0.599±0.000 0.616±0.010

FlowMDM BABEL f 0.389±0.009 0.532±0.014 0.618±0.007 0.631±0.002 0.652±0.001

Ours BABEL f 0.394±0.010 0.552±0.018 0.636±0.017 0.633±0.004 0.677±0.002

Ours HML-BABEL f 0.427±0.011 0.587±0.012 0.668±0.009 0.643±0.002 0.698±0.002

Ours HML-BABEL f + s 0.450±0.018 0.593±0.008 0.679±0.006 0.644±0.001 0.706±0.002

Table 4. Per-crop semantic correctness evaluation for frame-level Text2Motion generation. Training Set specifies the dataset used for
training, including BABEL, HumanML3D(HML), or the union/intersection of HML and BABEL. Input specifies the type of text input. f:
frame-level text, s: sequence-level text. f+s demonstrates that combining multi-level conditioning signals can enhance model performance
in terms of semantic correspondence. Symbols like ↑ indicates that higher, lower, or values closer to the ground truth (GT) are better,
respectively. The evaluation is repeated 10 times, and ± indicates the 95% confidence intervals.

HumanML3D, which contains only squence-level motions.
Consequently, FID and Diversity scores from TMR++ of-
fer a more reliable assessment. At the sequence level, both
evaluation models yield consistent results. For simplicity
and consistency, the main paper presents only FID TMR++
and Diversity TMR++.

F. More Applications
Due to space limitations, we only present part of appli-
cations in the main paper. Here, we showcase two addi-

tional applications that are made possible exclusively by
our multi-task model. Similar to UniDiffuser [2], UniMo-
tionnaturally supports applications such as motion variation
and text variation. For motion variation, given a motion
sequence, we first perform the motion-understanding task
to generate frame-level text descriptions aligned with the
motion. We then use this frame-level text as input for text-
to-motion generation, resulting in a new motion that retains
similar semantics but with different content. For text vari-
ation, we reverse the process to produce fine-grained text
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Method Training Set Input Per-crop Realism Per-seq Realism
FID ↓ Diversity → FID tmr++ ↓ Diversity tmr++ → FID ↓ Diversity → FID tmr++ ↓ Diversity tmr++ →

GT - - 0.000±0.000 8.823±0.067 0.000±0.000 1.375±0.005 0.000±0.000 9.296±0.086 0.000±0.000 1.391±0.003

TEACH BABEL f 2.557±0.016 7.879±0.119 0.155±0.001 1.340±0.003 3.577±0.025 7.605±0.066 0.304±0.001 1.344±0.003

DoubleTake BABEL f 2.820±0.127 8.248±0.102 0.195±0.002 1.332±0.005 5.619±0.268 7.350±0.074 0.353±0.002 1.337±0.004

STMC HML f 2.161±0.008 9.250±0.130 0.156±0.000 1.358±0.005 1.295±0.017 8.955±0.102 0.233±0.000 1.362±0.005

FlowMDM BABEL f 0.885±0.043 8.476±0.086 0.101±0.001 1.352±0.006 1.028±0.060 8.691±0.127 0.211±0.002 1.375±0.005

Ours BABEL f 1.206±0.079 9.007±0.141 0.087±0.002 1.366±0.009 0.791±0.091 8.899±0.159 0.180±0.004 1.374±0.002

Ours HML-BABEL f 0.506±0.024 8.979±0.095 0.071±0.001 1.372±0.005 0.401±0.030 8.956±0.123 0.150±0.001 1.378±0.003

Ours HML-BABEL f + s 0.487±0.021 9.040±0.118 0.066±0.002 1.373±0.009 0.299±0.023 8.978±0.095 0.133±0.004 1.381±0.006

Table 5. Frame-level Text2Motion generation per-crop and per-sequence realism evaluation. Crop-level realism measures the metrics
within each atomic crop, while Seq-level realism measures the fidelity of the overall motion. Symbols ↓, and → indicate that lower, or
values closer to the ground truth (GT) are better, respectively.

Figure 10. Fine-grained motion understanding with LLM. ChatGPT-4o is used to break down the ground-truth global descriptions into
atomic motion and durations. However, there is no alignment between text and motion since the model doesn’t take the motion as input.

annotation variance. Figure 9 provides examples of both
motion and text variation. For animated results, please refer
to the attached videos.

G. Motion-to-text Understanding Baselines

To establish baselines for our frame-level motion under-
standing sub-task, we initially attempted to use a large lan-
guage model (LLM), ChatGPT, to decompose sequence-
level inputs and assess potential outputs. However, due to
the LLM’s lack of motion awareness, the outputs were un-
reliable when the sequence-level information was vague or
incomplete. Even with detailed sequence-level descriptions,

the LLM struggled to generate accurate timestamps due to
the absence of motion data. Please refer to Fig. 10 for more
details.

We then considered using LLM-based motion models
like MotionGPT [17], which can process both motion data
and text prompts (to request timestamps and atomic text la-
bels). Despite this, MotionGPT also failed in this task. See
Fig. 11 for further information.
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Figure 11. Motion understanding comparison with MotionGPT [17]. MotionGPT is capable of performing multiple tasks, including
motion captioning and question answering. We tasked both MotionGPT (left) and Unimotion (right) with understanding an input motion by
breaking it down into motion segments. However, due to MotionGPT’s lack of temporal awareness, it was unable to successfully complete
this task. Specifically, instead of answering with multiple motion segments, it just predicts an incorrect length for the whole sequence
(A: “The motion lasts for approximately 2.5 seconds.”). In contrast, our model is the first to understand motion both semantically and
temporally.
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